If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x+2x-3+x=180
We move all terms to the left:
x^2-6x+2x-3+x-(180)=0
We add all the numbers together, and all the variables
x^2-3x-183=0
a = 1; b = -3; c = -183;
Δ = b2-4ac
Δ = -32-4·1·(-183)
Δ = 741
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{741}}{2*1}=\frac{3-\sqrt{741}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{741}}{2*1}=\frac{3+\sqrt{741}}{2} $
| -1+5f=5f | | (6x+14)=(16x-6) | | z/2-8=12 | | -9p+7=-2-9p | | 2m(5-3)=66 | | 5x-3(x-9)+10=4 | | 7x+3=7x+10 | | 8p+10=18 | | 14+10x+7=180 | | -8g+g+7=7-7g | | 8p+10=18 8p=p= | | 5(3-10k)-2=-5-6(1+8k) | | 7u+12=96 | | -9s+8=4-9s | | 4t^{2}+19=19 | | y/3-10=-9 | | –5(t−93)=60 | | 5n−12=3n+4 | | 3m+9+9m=-5+10m | | 3{h+5}=60 | | 1=f/6-3 | | 7+2u=–5 | | r-1,823=1,371 | | 19/4-3/1/2a=-1/4a+3/2 | | x²=-49 | | -(v+8)=-4(v+5) | | 1=f/6−3 | | 4x-2(x-5=-6+5x7 | | –3q=–5q+8 | | x=|4x|+5 | | k/1+4=7 | | (9x+17)(3x+7)=180 |